| 网站首页 | 雁过留声 | 电子入门 | 电子制作 | 家电影音 | 电路图纸 | 卫星电视 | 家电超市 | 软件下载 | 
您现在的位置: 电子爱好者 >> 家电影音 >> 音响技术 >> 扬声器(喇叭) >> 正文 用户登录 新用户注册
专 题 栏 目
最 新 热 门
最 新 推 荐
相 关 文 章
中音单元的设计(三)
中音单元的设计(一)
中音单元的设计(二)           ★★★
中音单元的设计(二)
作者:imefan 文章来源:网络 点击数: 更新时间:2008-3-13 17:28:44

 

磁路系统

  看过了形形色色的振膜,我们再来看看磁路系统。前二期陈运双先生已介绍了许多的磁铁材质,在此便略过,而将讨论重点放在磁路系统的整体设计上。严格说来,磁路系统应包含音圈的部分,而不是只有磁铁和磁极结构,因为它们是一起动作,也应该在设计时一并考虑。
简单的说,音盆之所以能动作就是靠音圈,而音圈的动作是靠其中电流变化的改变所产生之磁力与磁铁、磁极所产生的固定磁场相互作用而动作,这个原理大家应耳熟能详。其中,音圈的设计和磁隙的宽度、长度等有许多值得探讨的地方。

  音圈设计顾名思义,音圈就是发声用的线圈,是由漆包线加上特殊接着剂紧密整齐的缠绕在音圈筒上而成。漆包线的材质有铜、铝、银或其它合金,其横截面的形状大多做成长方形或六角形,以期能够达到最大的缠绕密度,也就是说在一定的音圈长度(注5)下能绕出较多的圈数,而较多的圈数便意味着更大的磁力,驱动力也就更好,音盆的加速度系数也就更高,结果便是能有高效率、大动态的能力。以扁线音圈来说,若横截面的形状做成长宽比1:5的扁长方形,绕制时以短边靠在音圈筒上,做出来的音圈将可提供比圆形截面的音圈高出30%的加速度系数、效率和动态。

  (注5:音圈长度是指绕好的音圈在轴向上的长度,而不是绕线展开的长度。)

  音圈绕在音圈筒上,其压力总和是非常可观的。你可以做个简单的实验:用一段细绳(缝衣绵线、尼龙钓线或牙线皆可),使三分力气密密的绕在手指上,绕上十圈就好,看看有什么结果?相信不用几秒你就会急着将它松开。有些单元的音圈在高张力的缠绕下,对音圈筒所施加的总压力可达到以吨计!所以音圈筒必须是要非常的强固,同时,为抵挡音圈的发热,音圈筒也要相当的耐热才行。一般是用铝(合金)、Kapton,或其它质轻、高强度且耐热的材料来制造圆筒。一些较讲究的厂家会将绕好的音圈组合做多重热处理,以达到更佳的稳定性。

  Klipsh的Jim Hunter便曾在“Speaker Builder”的专访中提到,他们曾收到顾客送修的喇叭,其中高音号角驱动器已从烧熔的塑料质号角喉部掉下来,可见当时整个驱动器实在是烫得不可开交,但拆开后其中的音圈组竟然还是好的!

  音圈尺寸的决定存在着两难,若求驱动力以达到高效率及大动态,大直径的长音圈应该能担当大任;但这么一来,重量增加,电感量也增加,又将不利于瞬时和高频响应。而长音圈便代表了音圈只有一部分被磁隙涵盖,如此磁隙中的磁场对音圈的控制力较弱,也较容易被音圈产生的磁场所调变,造成失真较高。若音圈做得很小,虽本身很轻,但驱动力又太弱,达不到理想的发声效率和控制力,承受功率也受限。所以,音圈的大小和振膜面积、形状,及磁铁的磁力大小等因素应该要有一个最适化的妥协。

磁铁及磁力系统

  再来看看磁铁及磁极的结构。传统上喇叭单元中的磁铁都是轴向极化,也就是磁铁的两极方向和空心圆柱形磁铁的中心轴方向平行,然后再使用导磁材料做成的磁极将磁力线引导至磁隙中,构成回路。而音圈动作所需要者便是磁隙中的径向磁场,也就是磁场方向平行于半径方向,呈向心收敛或离心放射。磁隙中的总磁力强度和磁束密度便是源自于磁铁的磁力,而这其间和磁铁种类、大小有关。绝大多数单元采用的磁铁便是铁氧陶瓷磁铁(三氧化二铁),因为这种材质的抗温度变化力很好,对抗反充磁的能力很强,机械强度和抗蚀性也佳,最重要的是成本低。但缺点是获得单位磁力强度的体积和重量都很大,所以为了要达到高效率,你总会看到巨大的磁路结构。高音单元或号角驱动器就不用说了,磁铁的直径一定比振膜大得多。而有些6吋到7吋的中音单元,其磁铁直径也可做到和振膜差不多大。甚至有些专业的10到12吋的中低音,磁铁直径也和振膜一样大!

  高磁力是我们所希望的,因为它能带来高效率、高动态、高控制力等好处。但是大体积的磁铁除了看起来比较雄状威武,其它便不见得有什么好处,甚至于对音波的传播会有一些不良影响。因为巨大直径的磁铁直接挡在振膜后方,背面的音波就只好从四周的侧面挤出来,有一部分还会直接被反射回振膜。若这个单元又是固定在很厚的障板上,情况就更雪上加霜了,因为振膜和磁铁间的距离也许和障板厚度差不多,若无额外的加工处理,那么背波就会从剩下的一圈窄缝间“喷出”。此时振膜背面所面临的,就是很强的近距离反射波和剧烈的压力变化,对整体的频率响应和失真都有很严重的不良影响。

  所以若是用上了磁铁结构特大的单元,就必须要将障板的内面做适当的加工,削出信道让背波可以顺利导出,如Theil的喇叭就有这类处理。或者就使用高强度而较薄的金属障板也可避开这个问题。其实,更进一步看,单元的框架设计同样也会面临类似的难题,像旧式以铁板冲压成型的框架,就有着较宽的支撑部分,若同时又和音盆本身靠得很近,就会增加背波的反射而造成音染。新的铝质铸造框架则能做出较为理想的形状,同时兼顾强度、美观,及低音染的实用性。


  或者,使用高磁力小体积的磁铁来使单元背波得以充分地舒展。大约五年前,Vendersteen(注6)推出的三音路喇叭中所用的中音单元便是特别向Vifa订制,采用小型的Neodymium磁铁。而Wilson Benesch的旗鉴Bishop,因为采用特殊的面对面Isobaric低音设计,单元的磁铁直接朝外,所以除了采用更新的强磁小型化镍铁硼磁铁,磁极还做成圆弧流线形,就连框架也在高强度的前题下做到了最小的正投影面积,解决先前提到的问题可谓面面俱到。而我多次提到的传奇性全音域单元Lowther,虽问世已数十年,一样很细心的注意到这个问题。虽然Lowther所采用的磁铁很大,但在形状上已尽可能流线化,巧妙的让出了音盆后方的空间,框架支撑部分也设计成以窄边面对发声方向,减低背波阻碍的努力可说无所不用其极。

  除了上述的问题,还有一项影响单元性能的因素,就是音圈在磁隙中的动作还有与磁铁的交互作用。严格说来,音圈和磁力系统的动作实际上是互推或互拉,只因磁力系统被框架和障板固定住,所以看起来好象是磁铁在驱动音圈。

  ( 注6:Vendersteen这家喇叭厂的设计理念颇为正确健康,总将成本花在看不见的地方,外观包装极为简单节省,声音表现中规中矩,音乐性也佳,应是爱乐者的良伴。可惜体形较不讨好,始终不得本地代理商及消费者的青睐)

  认清这个事实后,衍生出来的问题有:一、音圈本身产生的磁力会对磁铁进行反充磁,所以磁铁必须要挺得住,动态、驱动力和效率才不会打折扣。而磁铁对抗反充磁的能力和特性也会影响发声的特性,使用Alnico磁铁的喇叭在中高音域音色迷人,相信便和这个因素有关。 二、音圈本身产生的磁力会扰乱磁隙中原本恒定的磁场,造成失真。这个问题可以采用镀铜的磁极或插入铜质短路环来消除磁场的调变,进而大幅减低失真。这个技术对于中低音单元互调失真的改善尤其明显,因低音域发声需要运动冲程较长,同时又要发冲程短而快的中音,这会使磁场调变的复杂度大增。

磁力系统的两难 Vs. 创新的极化方向及磁极结构

  一开始谈到磁力系统的时候,我便提到传统上喇叭单元中的磁铁都是轴向极化,但无论如何到最后音圈需要的是径向的磁场。那么,为什么不一开始就把磁铁的磁场做成径向?因为制作上难度高、成本昂贵,一直到大约四、五年前才有人提出用径向极化的方式来制造喇叭单元。

  首先,传统的轴向极化结构有何缺点?一、体积较大;二、不易做到高磁束密度且深长的磁隙。体积大的问题先前已谈过,再来谈谈磁隙有啥蹊跷。

  传统磁力系统的磁隙长度就可说是等于上极板在磁隙端的厚度,在相同的磁铁条件下,要做到较高的磁束密度,首先可缩小磁隙宽度,但此举将使音圈的组合困难,增加成本;况且极板内的磁通量不可饱和,所以又要考虑极板材质和厚度。

  另外,若想做到长磁隙短音圈的组合,便势必会面临磁束密度降低的窘境,加上较短的音圈,整体发声效率将会降到很低。虽这样的组态可得到较佳的功率线性,但想同时兼具高效率,可要克服众多的两难。如Altec 515系列和TAD 160X系列,采用了短音圈长磁隙的架构,获致极佳的功率线性,同时又具有超高的效率,实在是非常的不容易,只能说这又是另一个人定胜天的例证。

  若使用径向极化的磁铁,兼具高磁束密度和长磁隙的磁力系统便轻易达成(成本还是不低,只是物理上的两难较少),等磁束密度的磁隙长度可比传统结构超出数倍,意味着单元的线性冲程也多出数倍!在高音压操作下的失真也就非常低。这样看起来便很适合于低音的再生,现在已有这样的产品,是一种用于专业领域的18吋低音(注7),据称其最大线性音压已让人耳无法忍受,而此时的失真仍非常之低!

跨入全音域

  咦?这篇文章不是要谈全音域单元吗,怎么光是中音就说了大半天?

  莫怪,莫怪!实在是因为全音域发声所面临的问题太多,无法一次说清楚,因此我想由中音切入,再往二端延伸,如此整体概念会比较清楚。因为一个理想的喇叭单元(无论高中低)要具备的条件应该是:一、低失真;二、功率线性佳;三、高效率;四、有效工作频段愈宽愈好。若我们把第四项发挥到极致,便是一个全音域单元了。

  下期我将会介绍如何以中音单元为基础推展到全音域发声,其中所会面临到的众多两难和各家厂牌的巧妙解决也是非常精彩,请拭目以待。

  乍看之下好象也不很复杂嘛,只要让一个中音单元再多发出一些高音和低音,不就成了全音域单元吗?你看那些汽车音响、计算机喇叭、手提收录音机、床头音响用的,不是到处可见那种不知名的“全音域”单元?好象也没多了不起嘛,穷嚷嚷的!

  事情可没这么简单,你可知道上述用途的那些不知名单元能发多宽的频段吗?我想不需要提供测量的数据你也可以轻易地听出,那些喇叭若能发出清楚的人声已属佳作,鼓声及铙钹也常仅供辨识而已,Bass声及高音打击乐器声更是常在虚无飘渺间。管风琴?弦乐器泛音?钢琴残响?别闹了!

  至于如何才称得上是全音域发声,请参考边栏的说明。接下来我们要来讨论的是,要让一个单元去负担所有的音频范围在设计上会面临哪些问题和两难。

低端延伸问题

  以外观而言,若尺寸相近,如同为6吋或7吋左右,锥盆中音和低音单元的差异实在有限,顶多是低音单元因需要较大的工作冲程而具备了较宽大而松软的悬边,其它的部分似乎“看起来”都差不多。但这也只是一般性法则,不见得放诸四海皆准。

  那么,若给你一个6吋至7吋的中音单元,是否有办法把它改成能发低音?若只求发得出低音而不管音压和失真程度,应该是可以的。一般来说,单元的操作频率下限一般可以粗略地由它的自由共振频率看出来(注1),也就是一般习惯性标注为“fs”者。

  那么,要如何调低这个频率呢?声学(音响)阻抗(注2)、振动部分质量、磁力强度,和悬挂顺服性等几项应是关键要素。其中,声学阻抗(或简称为『声阻』)与发声面积和工作频率直接相关,若以同尺寸直接发声和同频段工作而言,这项因素可视为相等而不必考虑(声阻这个概念对于低音的再生和全频段的发声效率息息相关,下次有机会再来谈这个主题)。所以,我们先来讨论其它的几项要素。

  让我们回头看看低频段工作时,单元振膜的行为。其实粗浅的说低频动作就是“慢速”的往复运动,单位时间内往返的次数少,这就是低频了。那么,就基本的物理学观念来看,在一定的施力大小之下,物体的加速与其质量成反比。所以,在其它条件相同或相似的情况下,振动质量愈大的单元,其自由共振频率就愈低。所以,若你稍仔细一些,去比较一下各种单元的数据资料,就会发现这项因素可说八九不离十。15吋以上的低音单元若自由共振频率在25Hz以下,则振动部分质量常高达100公克以上。


  要调低一个单元的自由共振频率,最简单的就是增加音盆的质量了。但是,这实在不是个好主意,因为重的音盆势必会带来低效率和很糟的高频延伸。所以,看起来此路不通。那么,接下来我们可以减少音盆的外部阻尼 ─ 主要有机械性阻尼和电气性阻尼二个因素。无论是哪一种阻尼,都是对音盆的动作施与制动力,阻止其原本的动作。

  对此,我们可以用汽车的悬吊系统来作个比喻:传统的美国大车常为了舒适性而将悬挂调得非常软,要做到这点,简单说就是要用低弹性系数的弹簧和柔顺的避震器(减震筒),这样的组合便具备了很低的系统调谐频率(注3),因此就可以船过水无痕的吸收掉绝大多数的坑洞颠簸,因为这些外力都是短暂时间内的脉冲响应,转换成频率领域就是中高频,所以能够有效的被吸收而不会激起系统的共振。但遇上波长很长(也就是频率很低)的脉冲,如桥面的起伏,就常会产生二到三周期的缓慢上下晃动,这便是整套系统的共振频率被外力激发而引起的共振。

  同样的,在喇叭单元上,要调低系统的共振频率也可以从悬挂的顺服性上面着手。将阻尼减弱,共振频率就降低了,直接了当。但采用此法还是会面临一些问题,我们再细看下去:

  机械性阻尼方面:指的就是音盆悬边及音盆和音圈筒相接处附近黏附的波状折纹悬挂所施予音盆之制动力。这套悬挂系统除了对音盆整体的运动产生阻尼之外,另外对音盆的盆分裂共振也有抑制的作用,尤其是外围悬边。所以一个单元若换用不同的悬边,将会大幅改变其音色,因为整体的共振控制及音染的模式和程度都已不同。若为了调低系统共振频率而贸然大幅减低悬挂阻尼将会带来音染程度的增加,尤其是中音域部分。所以,调整机械阻尼须小心从事,适可而止。

  电气性阻尼方面:指的其实是单元磁力对音圈的控制力。当然,单元的磁力愈大,驱动音圈的动力就愈大,同时制动力也愈大。强大的驱动力是我们所希望的,因为可以带来高效率低失真,但是如影相随的高阻尼却使得系统共振频率无法降低;这里,进退两难的态势便明明白白摆在眼前,因此我们只能取一个妥协。若再加入高端延伸的问题,这个妥协就更是不易取舍了。
高端延伸问题

  影响一个单元高端工作状况的主要因素和低端一样是“电气因素”和“机械因素”,只是情形不尽相同。所谓电气因素指的就是音圈所造成之电感性负载,我在先前的文章就曾提过这件事,现在让我们来看得更深入些。

  顾名思义,音圈就是一个电感线圈,若音圈单独存在,便是一个空心电感,此时,这个电感的电感量不高,而且很线性。不幸的是,音圈要在磁路结构内才能工作。没有例外的,音圈内就是中心磁极,这种结构就成了名符其实的铁心电感,这么一来电感量大幅提高,而且根据电感先天的低通特性,高频信号在这里就直接被大量衰减。更糟的是,随着音乐信号起舞的音圈与中心磁极的相对位置又不断改变,电感值和磁隙中的磁场便起了复杂的互动,严重的互相调变着,这种情况在大音量、宽频域发声时尤甚。此时,各种失真就直线上升,听感上便是模糊、粗糙、声音的纹理细节被抹平、立体音像溃散、音场扁平压缩。解决的方法是,在磁极上镀铜或插入铜片环,以使磁场短路,大幅减少相互调变,音圈的电感值也可大大的减低。此举可同时增加高频的延伸和降低失真。

  另外,所谓机械性因素就可以从物理学的基本原理来讨论:施力的大小等于质量和加速度的乘积(F=ma),其中加速度也就是速率的改变率。想象一下,一片振膜要在往前推的过程中减速,最后在冲程的终点停住,然后再加速往另一个方向后退,若是在20KHz,这全部的过程要在四万分之一秒完成!有兴趣的读者不妨自设一个冲程值,然后算算这样一个半周期简谐运动的顶点加速度值有多大。我想,不用去算就可以想见在四万分之一秒当中作180度方向改变的运动是有很大的加速度值!

  所以,要做到这等高频响应,就要使振膜达到这么高的加速度。从上述简单的定律,途径只有二:减轻振膜质量和加大驱动力。但这么一来,许多的两难和矛盾也随之而来。
文章录入:imefan    责任编辑:ImEfan 
  • 上一篇文章:

  • 下一篇文章:
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)